在数学分析中,与收敛(convergence)相对的概念就是发散(divergence
发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数 和,也就是说该级数的部分和序列没有一个有穷极限。
如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数。
调和级数的发散性被中世纪数学家奥里斯姆所证明。